Website is intended for physicians
Search:
Всего найдено: 2

 

Abstract

Recently, there has been a steady tendency to expand indications for organpreserving operations for kidney tumors.The success of the operation depends on many factors and, first of all, on the completeness of tumor removal and reliability of hemostasis without damage to the blood supply of the entire organ with a minimum time of thermal or cold ischemia. Particularly difficult for surgeon are tumors with intrarenal arrangement. This is due to difficulties of intraoperative determination of tumor localization, as well as technical aspects of removal of big newgrowth with the implementation of adequate hemostasis in the bed of the removed tumor. If resection of kidney poles with a tumor is a fairly simple operation, the enucleation of the latter in the depth of the parenchyma at the location in the middle segments of the kidney and in direct contact with large vessels, is of great technical complexity As a rule, central location of intrarenal tumor requires the "exposure" of kidney parenchyma by a separate incision, up to the sectional. The surgeon's task is to minimize such transparenchymal access, which creates difficulties with hemostasis in a limited space and time limit of thermal ischemia. Hemostatic insufficiency, in turn, can lead to postoperative bleeding, and formation of arteriovenous fistulas. Superselective embolization of branches of the renal artery supplying the intrarenal tumor ensures the subsequent optimal revision of the bed of the removed tumor, minimizes blood loss and allows to refuses blood flow arrest of entire organ.

Case report: article presents data of a young 33-year-old patient with a congenital anomaly in the blood supply of left kidney in the form of a multiple renal artery and kidney tumor T1AN0M0. Ultrasound, CT and MRI revealed an intraparenchymal tumor of the left kidney measuring 2,3x2,5x2,2 cm, with blood supply by 4 arteries extending from the aorta. As the first stage, superselective embolization of tumor's blood supplying artery with PVA 355-500 microns was performed. The second stage was the enucleation of a tumor of left kidney under the control of intraoperative ultrasound without thermal kidney ischemia. Intraoperative blood loss less than 150 ml. The patient was discharged on the 7th day

Conclusion: performing selective embolization of the renal artery feeding the tumor makes it possible to perform the operation without thermal ischemia of the kidney with minimal blood loss.

  

References

1.      Alyaev YU.G., Glybochko P.V., Grigoryan Z.G., Gazimiev M.A. Organ-preserving surgery for kidney tumors. M.:GEOTAR-Media,2009; S. 55-64. [In Russ.]

2.      3-D - technology for operations on the kidney: from virtual to real surgery. Pod red. Glybochko P.V., Alyaeva YU.G. M.: GEOTAR-Media, 2014; S.91-92. [In Russ.]

3.      MacLeman S, Imamura M., Lapitan M.C. Systematic review of perioperative end quality-of-life outcomes following surgical management of localized renal cancer. Eur Urol, 2012; 62:1097.

4.      May M., Brookman-Amissah S, Pflanz S., Roigas J., Hoschke B., Kendel F. Pre-operative renal arterial embolisation does not provide survival benefit in patients with radical nephrectomy for renal cell carcinoma. Br J Radiol, 2009; 82:724.

5.      Maxwell N.J., Saleem Amer N, Rogers E. Kiely D, Sweeney P, Brady AP, Renal artery embolisation in the palliative treatment of renal carcinoma. Br J Radiol, 2007; 80:96.

6.      Vishnyakova M.V., Vashchenko A.V., Demidov I.N., Gegenava B.B., Denisova L.B. Endovascular treatment of vascular pathology using three-dimensional navigation. First experience. Rossijskij elektronnyj zhurnal luchevoj diagnostiki. 2011; T1. №3. S.44-53. [In Russ.]

7.      Gegenava B.B., Vishnyakova M.V., Kiselev A.M., Vashchenko A.V., Demidov I.N., Vishnyakova M.V. (ml.) Endovascular treatment of arteriovenous malformations of cerebral vessels using three-dimensional guidance technology. Al'manah klinicheskoj mediciny. 2013g., №29 str.3-7. [In Russ.]

8.      Kokov L.S., Storozhev R.V., Bocharov S.M., Anisimov YU.A., Belozerov G.E., Pinchuk A.V., Experience in embolization of the artery of a renal allograft before nephrotransplantectomy at a long time after surgery. Transplantologiya. 2012; № 1-2. S. 70-73. [In Russ.]

9.      Bazaev V.V., Gegenava B.B., Stashuk G.A., Bychkova N.V., Kazanceva I.A. Successful resection of the kidney in a patient with rupture of angiomyolipoma with preliminary superselective embolization of renal vessels. Annaly hirurgii, 2018; T.23 №4. S239-246. [In Russ.]

 

 

Abstract:

Aim: was to evaluate possibilities and advantages of endovascular treatment of intracranial aneurysms (IA) and arteriovenous malformations (AVM) using three-dimensional navigation (3D-roadmapping).

Materials and methods: during 2010-2013 years 103 embolizations of IA and AVM ir 88 patients were performed in our angiography department. Embolizations of IA were managed by metallic detachable coils, embolizations of AVM - by Histoacryl : Lipiodol glue composition. 3D-roadmapping technique was applied for guidance of endovascular tools in cerebral arteries anc catheterization the IA cavity and AVM-feeding arteries during the procedure. 3D-roadmapping technique is based on creation of composite images that consist of two-dimensional fluoroscopic views superimposed on virtual three-dimensional model of the vessel.

Results: endovascular interventions with 3D-roadmapping were performed in 65(63%) cases. In 49 (75%) cases we used 3DRA data to create three-dimensional model of cerebral vessels and in 16 (25%) cases - CT-angiography data. Complex algorithm of diagnosis and endovascular treatment of IA and AVM using 3D-roadmapping was introduced.

Conclusion: our experience of the endovascular embolization of IA and AVM with 3D-roadmapping convincingly showed that usage of this technique is possible and effective. In comparison with two-dimensional navigation there was a tendency in reduction of the effective exposure dose, also there was a statistically significant decrease of amount of contrast material , and of time for superselective catheterization of AVM-feeding arteries and IA cavity. 

 

References

1.     Becske T., Jallo G.I. Chief Editor: Lutsep H.L. Subarachnoid Hemorrhage. Updated: Oct 20, 2011 Available at: http://www.emedicine.medscape.com.

2.     Krylov V.V., Prirodov A.V., Petrikov S.S. Netravmaticheskoe subarahnoidal'noe krovoizlijanie: diagnostika i lechenie [Nontraumatic subarachnoid hemorrhage: diagnosis and treatment.]. Consilium Medicum. Bolezni serdca i sosudou 2008; 1: 14-18 [In Russ].

3.     Методические Указания 2.6.1.2944-11 «Контроль эффективных доз облучения пациентов при проведении медицинских рентгенологических исследований». Metodicheskie Ukazanija 2.6.1.2944-11 «Kontrol jeffektivnyh doz obluchenija pacientov pri provedenii medicinskih rentgenologicheskih issledovanij»[«Control of effective patient dose in medical X-ray examinations»] [In Russ].

4.     JohnstonS.C., Higashida R.T., Barrow D.L., Caplan L.R., et al: Recommendations for the endovascular treatment of intracranial aneurysms. A statement for health care professionals from the Committee on Cerebrovascular Imaging of the American Heart Association Council on Cardiovascular Radio. Выходные данные?

5.     Debrun G.M., Aletich V.A., Kehrli P., et al: Selection of cerebral aneurysms for treatment using Guglielmi detachable coils: The preliminary University of Illinois at Chicago experience. Neurosurgery. 1998;43:1281-1295.

6.     Debrun G.M., Aletich V.A., Kehrli P., Misra M., Ausman J.I., Charbel F. Selection of cerebral aneurysms for treatment using Guglielmi detachable coils: the preliminary University of Illinois at Chicago experience. Neurosurgery 1998;43:1281-1295.

7.     Fernandez Zubillaga A., Guglielmi G., Vinuela F.. Duckwiler G.R. Endovascular occlusion of intracranial aneurysms with electrically detachable coils: correlation of aneurysm neck size and treatment results. AJNR Am. J. Neuroradiol. 1994;15: 815-820.

8.     Svistov D.V., Pavlov O.A., Kandyba D.V., Nikitin A.I., Savello A.V., Landik S.A., Arshinov B.V.. Znachenie vnutrisosudistogo metoda v lechenii pacientov s anevrizmaticheskoj bolezn'ju golovnogo mozga [Meaning of intravascular method in patients with aneurysmal disease brain.]. Nejrohirurgija. 2011; 1: 21-28 [In Russ].

9.     Gallas S., Januel A.C., Pasco A., Drouineau J., Gabrillargeus J., Gaston A., Cognard C., Herbreteau D. Long-term follow-up of 1036 cerebral aneurysms treated by bare coils: a multicentric cohort treated between 1988 and 2003. J. Amer. J. Neuroradiol. 2009; 30(10): 1986-1992. 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы